Продажа эмалированных проводов - ПП "Полюс"

Предприятие "ПОЛЮС" -

продажа эмальпровода 

Медь

Производство меди уже около ста лет служит показателем мирового промышленного развития. По использованию в различных отраслях промышленности медь является одним из самых распространенных металлов. До начала XX в. ее основная масса использовалась для получения латуни (сплава меди с оловом, серебром и свинцом), из которой традиционно изготавливали домашнюю утварь и оружие. Настоящий медный бум начался с открытием электричества и созданием электротехнической промышленности. Спрос на медь настолько возрос, что стали разрабатывать руды с очень низким содержанием металла - 0,3-0,5 %.

Благодаря своим свойствам, среди которых пластичность, коррозионная стойкость, электропроводность, высокие эстетические свойства и относительно невысокая стоимость производства и извлечения, медь применяется в различных отраслях промышленности, начиная от медицины и заканчивая электроникой. Процентное распределение ее использования представлено на рис. 6.

Первое место в мире по добыче и производству меди занимает Чили (рис. 7). Эта страна потеснила лидировавшие долгие годы США и является крупнейшим экспортером меди.

Второй в мире нетто-экспортер металла - Россия. За пределы страны поставляется свыше 80 % производимой меди (рис. 8). При этом по потреблению рафинированной меди на душу населения Россия на порядок отстает от развитых стран и уступает некоторым развивающимся.

Потребление меди в 2002 г. составило от 8 кг/г. на душу населения в Европе и 7 кг/г. в Северной Америке до 0,9 кг/г. в странах СНГ и 0,2 кг/г. в Африке.

Медь можно считать опережающим индикатором экономической активности. Ее запасы увеличиваются в периоды спада в мировой экономике и снижаются во время экономического подъема. Использование меди тесно связано с расширением промышленных мощностей в целом. Сокращение строительства новых производств в электротехнической, автомобильной, авиационной и других отраслях ведет к снижению потребления меди и, как следствие, к падению цены на данный металл (рис. 9).

Рис.6. Потребители меди

Рис.7. Доли стран-производителей

 

Медь


Медь — химический элемент с атомным номером 29, атомной массой 63,546 в периодической системе, обозначается символом Cu (лат. Cuprum), красновато-золотистого цвета (розовый при отсутствии оксидной пленки). Пластичный переходный металл, с давних пор широко применяемый человеком.

Из-за сравнительной доступности для получения из руды и малой температуры плавления медь — самый первый металл, широко освоенный человеком. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия.

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд.

Она получила широкое применение в технике и промышленности благодаря ряду ценных свойств, которыми обладает. Важнейшими свойствами меди являются высокие электро- и теплопроводность, высокая пластичность и способность подвергаться пластической деформации в холодном и нагретом состояниях, хорошая сопротивляемость коррозии и способность к образованию многих сплавов с широким диапазоном различных свойств. По показателям электро- и теплопроводности медь уступает только серебру, имеет очень высокую удельную теплоёмкость. Медь диамагнитна.

Более 50% добываемой меди применяется в электротехнической промышленности (чистая медь); примерно 30 — 40 % меди применяется в виде сплавов, которые имеют большое значение (латуни, бронзы, мельхиоры и др.). Например, в производстве полупроводниковых приборов медь используют для изготовления деталей самого прибора, прежде всего выводов и кристаллодержателей (кристаллодержатель – это деталь, на которой непосредственно укреплена пластинка полупроводника) мощных приборов и деталей технологического оборудования.

 

Медь

История


Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с Медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. Медь и ее сплавы сыграли большую роль в развитии материальной культуры. Благодаря легкой восстановимости оксидов и карбонатов медь была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах.

Знания человека об этом материале и опыт использования меди уходят в далекое прошлое. Считается, что начало было положено 10 000 лет тому назад. Фрагменты медных бус и брошей из крупиц чистой меди были найдены на Среднем Востоке (в Иране в Ali Koch)и в районах современной Турции (Cayonu и Catal Huyuk).

Искусство плавления руд карбоната и окисла меди, скорее всего, было освоено человеком около 2 000 – 4 000 лет назад в районе Турции и в небольшом регионе между современным Израилем и Египтом. Производство изделий из меди ширилось мо мере развития методов ее добычи, положительное значение имело также освоение техники плавления сульфидных руд около 4 500 лет назад.

К 3000 до н.э. в Индии, Месопотамии и Греции для выплавки более твердой бронзы в медь стали добавлять олово. Открытие бронзы могло произойти случайно, однако ее преимущества по сравнению с чистой медью быстро вывели этот сплав на первое место. Так начался «бронзовый век».

Изделия из бронзы были у ассирийцев, египтян, индусов и других народов древности. Однако цельные бронзовые статуи древние мастера научились отливать не раньше 5 в. до н.э. Около 290 до н.э. Харесом в честь бога солнца Гелиоса был создан Колосс Родосский. Он имел высоту 32 м и стоял над входом во внутреннюю гавань древнего порта острова Родоса в восточной части Эгейского моря. Гигантская бронзовая статуя была разрушена землетрясением в 223 н.э.

Предки древних славян, жившие в бассейне Дона и в Приднепровье, применяли медь для изготовления оружия, украшений и предметов домашнего обихода. Русское слово «медь», по мнению некоторых исследователей, произошло от слова «мида», которое у древних племен, населявших Восточную Европу, обозначало металл вообще.

 

 

Медь

Нахождение в природе


В земной коре содержание меди составляет около 5·10-3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4.(52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.

Большие месторождения медных руд найдены в различных частях Северной и Южной Америк, в Африке и на территории нашей страны. В 18–19 вв. близ Онежского озера добывали самородную медь, которую отправляли на монетный двор в Петербург. Открытие промышленных месторождений меди на Урале и в Сибири связано с именем Никиты Демидова. Именно он по указу Петра I в 1704 начал чеканить медные деньги.

Богатые месторождения меди давно выработаны. Сегодня почти весь металл добывается из низкосортных руд, содержащих не более 1% меди. Некоторые оксидные руды меди могут быть восстановлены непосредственно до металла нагреванием с коксом. Однако большая часть меди производится из железосодержащих сульфидных руд, что требует более сложной переработки. Эти руды сравнительно бедные, и экономический эффект при их эксплуатации может обеспечиваться лишь ростом масштабов добычи.

Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото.

В морской воде содержится примерно 1·10-8% меди. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды меди, имеющие большое промышленное значение.

 

Физические свойства


Xимический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546; мягкий, ковкий металл красного цвета. Природная медь состоит из смеси двух стабильных изотопов - 63Сu (69,1%) и 65Сu (30,9%).

Цвет меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 A; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 A; ионные радиусы Cu+ 0,98 A; Сu2+ 0,80 A; tпл 1083 °С; tкип 2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С). Наиболее важные и широко используемые свойства меди: высокая теплопроводность - при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление - при 20 °С 1,68·10-8 ом·м. Термический коэффициент линейного расширения 17,0·10-6.

Давление паров над медью ничтожно, давление 133,322 н/м2 (т.е. 1 мм рт.ст.) достигается лишь при 1628 °С. Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость Меди по Бринеллю 350 Мн/м2 (т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2 (т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103 Мн/м2(т.е. 13,2·103 кгс/мм2). Путем наклепа предел прочности может быть повышен до 400-450 Мн/м2, при этом удлинение уменьшается до 2% , а электропроводность уменьшается на 1-3% . Последствия наклепа устраняются после отжига металла при 900-1000 К. Под действием нейтронного облучения (373 К, поток 5.1019 n/см2) предел текучести меди возрастает почти в 2,7 раза, сопротивление разрыву - в 1,26 раза, удлинение уменьшается в 1,35 раза. Отжиг наклепанной меди следует проводить при 600-700 °С. Небольшие примеси Bi (тысячные доли%) и Рb (сотые доли%) делают медь красноломкой, а примесь S вызывает хрупкость на холоде. Медь растворяет водород, который существенно ухудшает ее механические свойства ("водородная болезнь").

Металлическая медь, как и серебро, обладает антибактериальными свойствами.

Химические свойства

Химическая активность меди невелика. В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соответствующих солей:

2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

Кроме того, медь можно перевести в раствор действием водных растворов цианидов или аммиака:

2Cu + 8NH3·H2O + O2 = 2[Cu(NH3)4](OH)2 + 6H2O

При нагревании металла на воздухе или в кислороде образуются оксиды меди: желтый или красный Cu2O и черный CuO. Повышение температуры способствует образованию преимущественно оксида меди(I) Cu2O. В лаборатории этот оксид удобно получать восстановлением щелочного раствора соли меди(II) глюкозой, гидразином или гидроксиламином:

2CuSO4 + 2NH2OH + 4NaOH = Cu2O + N2 + 2Na2SO4 + 5H2O

Эта реакция – основа чувствительного теста Фелинга на сахара и другие восстановители. К испытываемому веществу добавляют раствор соли меди(II) в щелочном растворе. Если вещество является восстановителем, появляется характерный красный осадок.

Поскольку катион Cu+ в водном растворе неустойчив, при действии кислот на Cu2O происходит либо дисмутация, либо комплексообразование:

Cu2O + H2SO4 = Cu + CuSO4 + H2O

Cu2O + 4HCl = 2 H[CuCl2] + H2O

Оксид Cu2O заметно взаимодействует со щелочами. При этом образуется комплекс:

Cu2O + 2NaOH + H2O = 2Na[Cu(OH)2]

Оксиды меди не растворимы в воде и не реагируют с ней. Единственный гидроксид меди Cu(OH)2 обычно получают добавлением щелочи к водному раствору соли меди(II). Бледно-голубой осадок гидроксида меди(II), проявляющий амфотерные свойства (способность химических соединений проявлять либо основные, либо кислотные свойства), можно растворить не только в кислотах, но и в концентрированных щелочах. При этом образуются темно-синие растворы, содержащие частицы типа [Cu(OH)4]2–. Гидроксид меди(II) растворяется также в растворе аммиака:

Cu(OH)2 + 4NH3*H2O = [Cu(NH3)4](OH)2 + 4H2O

Гидроксид меди(II) термически неустойчив и при нагревании разлагается:

Cu(OH)2 = CuO + H2O

Большой интерес к химии оксидов меди в последние два десятилетия связан с получением высокотемпературных сверхпроводников, из которых наиболее известен YBa2Cu3O7. В 1987 было показано, что при температуре жидкого азота это соединение является сверхпроводником. Главные проблемы, препятствующие его широкомасштабному практическому применению, лежат в области обработки материала. Сейчас наиболее перспективным считается изготовление тонких пленок.

Многие из халькогенидов меди – нестехиометрические соединения. Сульфид меди(I) Cu2S образуется при сильном нагревании меди в парах серы или в среде сероводорода. При пропускании сероводорода через водные растворы, содержащие катионы Cu2+, выделяется коллоидный осадок состава CuS. Однако, CuS – не простое соединение меди(II). Оно содержит группу S2 и лучше описывается формулой CuI2CuII(S2)S. Селениды и теллуриды меди проявляют металлические свойства, а CuSe2, CuTe2, CuS и CuS2 при низких температурах являются сверхпроводниками.

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

2FeCl3 + Cu = CuCl2 + 2FeCl2

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)]2+. При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Медь

Производство


Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования.

В мировой практике 80% медь извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего сродства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а оксиды образуют шлак. Штейн отделяют от шлака отстаиванием.

Обжиг проводят при переработке высокосернистых и полиметаллических концентратов. При обжиге удаляют избыточное колличество S в форме газов, содержащих 5-8% SO2 и используемых для производства H2SO4, и переводят часть примесей (Fe, Zn, As, Pb и др.) в формы, переходящие при последней плавке в шлак. Обжиг проводят в печах "кипящего слоя" с применением дутья, обогащенного О2 (24-26% О2), без затрат углеродистого топлива. Продукт обжига - огарок - плавят в печах отражательного типа, реже - электропечах. Богатые медью руды плавили в шахтных печах, в настоящее время этот способ имеет подчиненное значение. Перечисленные способы плавки связаны с расходом (10-18% от массы шихты) углеродистого топлива (природного газ, мазут, кокс) или электроэнергии (350-450 кВт.ч на 1 т шихты).

На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь пода 300 м2 и более (30 м х 10 м); необходимое для плавления тепло получают сжиганием углеродистого топлива (природный газ, мазут) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).

Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основные массу медных концентратов, обладают высокой теплотворной способностью. Поэтому все больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскаленную до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка).

Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания оксидов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической Меди и SO2. Эту черновую Медь разливают в формы.

Слитки (а иногда непосредственно расплавленную черновую Медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде оксидов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака Медь для восстановления растворенной в ней Cu2О "дразнят", погружая в жидкий металл концы сырых березовых или сосновых бревен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкисленным H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая Медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную Медь промывают водой и переплавляют. Благородные металлы, Se, Те и других ценные спутники Медь концентрируются в анодном шламе, из которого их извлекают специальной переработкой. Никель концентрируется в электролите; выводя часть растворов на упаривание и кристаллизацию, можно получить Ni в виде никелевого купороса.

При пирометаллургической переработке медного концентрата извлекают до 96-98% меди и благородных металлов, однако степень извлечения сопутствующих элементов (S, Zn, Ni, Pb) гораздо ниже, a железо полностью теряется со шлаком.

Наряду с пирометаллургическими применяют также гидрометаллургические методы получения меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора медь либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.

 

Применение


Большая роль меди в технике обусловлена рядом ее ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам медь - основные материал для проводов; свыше 50% добываемой Меди применяют в электротехнической промышленности. Все примеси понижают электропроводность Меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9% Cu.

Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п.

Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры. Медные сплавы — латуни (основная добавка цинк, Zn), бронзы (сплавы с разными элементами, главным образом металлами — оловом, алюминием, берилием, свинцом, кадмием и другими, кроме цинка и никеля) и медно-никелевые сплавы, в том числе мельхиор и нейзильбер. В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с алюминием и медь с никелем) применяют для чеканки монет — «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота.


Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из меди и сплавов украшаются чеканкой, гравировкой и тиснением. Легкость обработки меди (обусловленная ее мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из меди отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. Медь нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века медь применяется также для изготовления печатных форм.

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-?, который является основой для получения сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов, и батарей. Медь самый широкоупотребляемый катализатор полимеризации ацетилена.

Кроме нужд тяжелой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шелка.

Биологическое действие


Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO4.5H2O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Высшие растения легко переносят сравнительно большое поступление соединений меди из внешней среды, низшие же организмы, наоборот, чрезвычайно чувствительны к этому элементу. Самые незначительные следы соединений меди их уничтожают, поэтому растворы сульфата меди или их смеси с гидроксидом кальция (бордосская жидкость) применяют как противогрибковые средства.

Все соли меди ядовиты; раздражают слизистые, поражают желудочно-кишечный тракт, вызывают тошноту, рвоту, заболевание печени и др. При вдыхании пыли меди развивается хроническое отравление. ПДК для аэрозолей меди 1 мг/м3, питьевой воды 1,0 мг/л, для рыбных водоемов 0,01 мг/л, в сточных водах до биологической очистки 0,5 мг/л.

Из представителей животного мира наибольшие количества меди содержатся в телах осьминогов, устриц и других моллюсков. В их крови она играет ту же роль, что железо в крови других животных. В составе белка гемоцианина она участвует в переносе кислорода. Неокисленный гемоцианин бесцветен, а в окисленном состоянии он приобретает голубовато-синюю окраску. Поэтому не зря говорят, что у осьминогов – голубая кровь.

Основная роль меди в тканях растений и животных — участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Медь необходима для осуществления различных функций организма — дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ.

Организм взрослого человека содержит около 100 мг меди, сосредоточенной, в основном, в белках, только содержание железа и цинка выше. Ежедневная потребность человека в меди составляет около 3–5 мг. Дефицит меди проявляется в анемии, однако избыток меди также опасен для здоровья.

Интересные факты

  • Малахит является одним из минералов меди.
  • По общему объему мирового производства и потребления медь прочно занимает среди металлов третье место, уступая лишь железу и алюминию.
  • Польские ученые установили, что в тех водоемах, где присутствует медь, карпы отличаются крупными габаритами. В прудах или озерах, где меди нет, быстро развивается грибок, который поражает карпов.
  • Медная руда стала виновником аварии, которую потерпело норвежское грузовое судно «Анатина». Трюмы теплохода, направлявшегося к берегам Японии, были заполнены медным концентратом. Внезапно прозвучал сигнал тревоги: судно дало течь. Оказалось, что коварную шутку с моряками сыграл их груз: медь, содержащаяся в концентрате, образовала со стальным корпусом «Анатины» неплохую гальваническую пару, а испарения морской воды послужили электролитом. Возникший гальванический ток разъел обшивку судна до такой степени, что в ней появились пробоины, куда и хлынула океанская вода.
  • В последнее время в некоторых областях техники медь и ее сплавы заменяют другими металлами, прежде всего алюминием. В США, например, алюминий полностью вытеснил медь в высоковольтных линиях электропередач.

 

Материалы, используемые в кабельной промышленности

Медь

Медь (лат. Cuprum) - химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2.3H2O, сульфид CuS, сульфат(медный купорос) CuSO4.5H2O, карбонат CuCO3.Cu(OH)2, хлорид CuCl2.2H2O.

Медь - один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 - 3-е тысячелетие до н.э.) назывался медным веком или халколитом ( от греческого chalkos - медь и lithos - камень) или энеолитом (от латинского aeneus - медный и греческого lithos - камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь - ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см3) , отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083oC). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей:

2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.

В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной - зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда - Cu5FeS4), халькопирит (медный колчедан - CuFeS2), халькозин (медный блеск - Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь

  • Плотность меди - 8,93*103кг/м3;
  • Удельный вес меди - 8,93 г/cм3;
  • Удельная теплоемкость меди при 20oC - 0,094 кал/град;
  • Температура плавления меди - 1083oC ;
  • Удельная теплота плавления меди - 42 кал/г;
  • Температура кипения меди - 2600oC ;
  • Коэффициент линейного расширения меди
  • (при температуре около 20oC) - 16,7 *106(1/град);
  • Коэффициент теплопроводности меди - 335ккал/м*час*град;
  • Удельное сопротивление меди при 20oC - 0,0167 Ом*мм2/м;

Модули упругости алюминия и коэффициент Пуассона

Наименование материала

Модуль Юнга, кГ/мм2

Модуль сдвига, кГ/мм2

Коэффициент Пуассона

Медь, литье

Медь прокатанная

Медь холоднотянутая

8400

11000

13000

-

4000

4900

-

0,31-0,34

-

Соединения меди

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя. Оксид меди (II), или окись меди, CuO - черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший осислитель. Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II) - очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли. Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+, поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков. Хлорид меди (II) CuCl2. 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные - сине-голубой. Нитрат меди (II) Cu(NO3)2.3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II). Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II). 2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3v + 2Na2SO4 + CO2^ Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике. Ацетат меди (II) Cu (CH3COO)2.H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски. Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака. Из солей меди получают разноообразные минеральные краски. Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).

Производство меди

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.

Основным компонентом раствора при электролитическом рафинировании служит сульфат меди - наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной ("черновой") меди, можно разделить на две группы.

  1. Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.
  2. Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.

Сплавы меди

Сплавы, повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни - сплавы меди с цинком ( меди от 60 до 90% и цинка от 40 до 10%) - прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

  • Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.
  • Свинцовые бронзы, содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.
  • Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
  • Бериллиевые бронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.
  • Кадмиевые бронзы - сплавы меди с небольшим количества кадмия (до1%) - используют при производстве троллейных проводов, для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои - сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное - цинк).

Применение меди

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы. Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается , не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO4.5H2O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Алюминий

Алюминий - химический элемент III группы периодической системы Менделеева (атомный номер 13, атомная масса 26,98154). В большинстве соединений алюминий трехвалентен, но при высоких температурах он способен проявлять и степень окисления +1. Из соединений этого металла самое важное - оксид Al2O3.

Алюминий - серебристый-белый металл, легкий (плотность 2,7 г/см3), пластичный, хороший проводник электричества и тепла, температура плавления 660oC. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой - оксидом алюминия. Оксид алюминия (Al2O3) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты - соли, содержащие алюминий в составе аниона:

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4].

Алюминий, лишенный защитной пленки, взаимодействуют с водой, вытесняя из нее водород:

2Al + 6H2O = 2Al(OH)3 + 3H2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH)3 + NaOH = Na[Al(OH)4].

Суммарное уравнение растворения алюминия в водном растворе щелочи имеет следующий вид:

2Al + 2NaOH +6H2O = 2Na[Al(OH)4] + 3H2.

Алюминий активно взаимодействует и с галогенами. Гидроксид алюминия Al(OH)3 - белое, полупрозрачное, студенистое вещество.

В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый - среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия - боксит содержит 28-60% глинозема - оксида алюминия Al2O3.

В чистом виде алюминий впервые был получен датским физиком Х. Эрстедом в 1825 году, хотя и является самым распространенным металлом в природе.

Производство алюминия осуществляется электролизом глинозема Al2O3 в расплаве криолита NaAlF4 при температуре 950oC.

Алюминий применяется в авиации, строительстве, преимущественно в виде сплавов алюминия с другими металлами, электротехнике (заменитель меди при изготовлении кабелей и т.д.), пищевой промышленности (фольга), металлургии (легирующая добавка), алюмотермии и т.д.

Характеристики алюминия

  • Плотность алюминия - 2,7*103 кг/м3;
  • Удельный вес алюминия - 2,7 г/cм3;
  • Удельная теплоемкость алюминия при 20oC - 0,21 кал/град;
  • Температура плавления алюминия - 658,7oC ;
  • Удельная теплоемкость плавления алюминия - 76,8 кал/град;
  • Температура кипения алюминия - 2000oC ;
  • Относительное изменение объема при плавлении (дельтаV/V) - 6,6%;
  • Коэффициент линейного расширения алюминия (при температуре около 20oC) : - 22,9 *106(1/град);
  • Коэффициент теплопроводности алюминия - 180ккал/м*час*град;

Модули упругости алюминия и коэффициент Пуассона

Наименование материала

Модуль Юнга, кГ/мм2

Модуль сдвига, кГ/мм2

Коэффициент Пуассона

Алюминиевая бронза, литье
Алюминиевая проволока тянутая
Алюминий катаный

10500

7000

6900

4200

-

2600-2700





0,32-0,36

Отражение света алюминием (числа, приведенные в таблице, показывают, какая доля света в %, падающего перпендикулярно к поверхности, отражается от нее)

Наименование волн

Длина волны

Отражение света, %

Ультрафиолетовые

1880
2000
2510
3050
3570

25
31
53
64
70

Видимые

5000
6000
7000

-
-
-

Инфакрасные

8000
10000
50000
100000

-
74
94
97

Оксид алюминия Al2O3

Оксид алюминия Al2O3, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные в красный или синий цвет, представляют собой драгоценные камни - рубин и сапфир. В настоящее время рубины получают искусственно, сплавляя с глиноземом в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов - лазеров, создающих направленный пучек монохроматического излучения.

Корунд и его мелкозернистая разновидность, содержащая большое количество примесей - наждак, применяются как абразивные материалы.

Производство алюминия

Основным сырьем для производства алюминия служат бокситы, содержащие 32-60% глинозема Al2O3 . К важнейшим алюминиевым рудам относятся также алунит и нефелин. Россия располагает значительными запасами алюминиевых руд. Кроме бокситов, большие месторождения которых находятся на Урале и в Башкирии, богатым источником алюминия является нефелин, добываемый на Кольском полуострове. Много алюминия находится и в месторождениях Сибири.

Алюминий получают из оксида алюминия Al2O3 электролитическим методом. Используемый для этого оксид алюминия должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Очищенный Al2O3 получают переработкой природного боксита.

Основное исходное вещество для производства алюминия - оксид алюминия. Он не проводит электрический ток и имеет очень высокую температуру плавления (около 2050oC), поэтому требуется слишком много энергии.

Необходимо снизить температуру плавления оксида алюминия хотя бы до 1000oC. Такой способ параллельно нашли француз П. Эру и американец Ч. Холл. Они обнаружили, что глинозем хорошо растворяется в раплавленном криолите - минерале состава AlF3 .3NaF. Этот расплав и подвергают элктролизу при температуре всего около 950oC на алюминиевых производствах. Запасы криолита в природе незначительны, поэтому был создан синтетический криолит, что существенно удешевило производство алюминия.

Гидролизу подвергают расплавленную смесь криолита Na3 [AlF6 ] и оксида алюминия. Смесь, содержащая около 10 весовых процентов Al2O3 , плавится при 960oC и обладает электропроводностью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. Для дополнительного улучшения этих характеристик в состав смеси вводят добавки AlF3, CaF2 и MgF2. Благодаря этому проведение электролиза оказывается возможным при 950oC.

Эликтролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичем. Его дно (под), собранное из блоков спресованного угля, служит катодом. Аноды (один или несколько) располагаются сверху: это - алюминиевые каркасы, заполненные угольными брикетами. На современных заводах электролизеры устанавливаются сериями; каждая серия состоит из 150 и большего числа электролизеров.

При электролизе на катоде выделяется алюминий, а на аноде - кислород. Алюминий, обладающий большей плотностью, чем исходный расплав, собирается на дне эликтролизера, откуда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя CO и CO2.

Первый алюминиевый завод в России был построен в 1932 году в Волхове.

Сплавы алюминия

Сплавы, повышающие прочность и другие свойства алюминия, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава). Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.

Силумин - легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Магналии - сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т.д. (деформируемые магналии).

Основные достоинства всех сплавов алюминия состоит в их малой плотностью (2,5-2,8 г/см3), высокая прочность (в расчете на единицу веса), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработка.

Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды, спорттоваров, мебели, рекламе и других отраслях промышленности.

По широте применения сплавы алюминия занимают второе место после стали и чугуна. Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка, железа. Алюминий применяется и для алитирования (алюминирования) - насыщения поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окисления при сильном нагревании, т.е. повышения жароупорности (до 1100 oC) и сопротивления атмосферной коррозии.